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Trapping Aspects in Enhanced Diffusion 

G. Zumofen,  ~ J. Klafter, 2 and A. Blumen 3 

We study the superlinear diffusion (x2(t)) ~ t ~, e > 1, in layered media containing 
random velocity fields. The superlinear behavior holds in the case of random 
velocities along the x direction accompanied by diffusional motion in the space 
transverse to it. The transverse space can be either Euclidean, fractal, or 
ultrametric. For a one-dimensional transverse space we derive exact expressions 
for the higher moments of the displacement. Furthermore, we investigate the 
propagator P(x, t) along the x direction and establish its scaling behavior. Our 
analysis highlights the resemblance between the stretched-Gaussian behavior of 
the propagator and the stretched-exponential form of the survivial probability 
in the trapping problem; both show late crossover behavior. 
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1. I N T R O D U C T I O N  

There  has  been  a g ro wi n g  in teres t  in mode l s  of t r a n s p o r t  which  exhib i t  

e n h a n c e d  diffusion;  for this case the m e a n - s q u a r e d  d i sp l acemen t  is super -  

l inear :  

( x 2 ( t ) ) ~ t  ~, c ~ > l  (1) 

Several  m o d e l s  for e n h a n c e d  diffusion have been  p roposed :  (1) Gene ra l i z a -  

t ions  of the di f fus ion e q u a t i o n  by  complex  a n d  somet imes  n o n l o c a l  
kernels .  (1-6) (2) D e t e r m i n i s t i c  maps .  (7) ( 3 ) L 6 v y  walks,  a n  ex tens ion  of  the 

c o n t i n u o u s - t i m e  r a n d o m  walk  ( C T R W )  formal ism.  (813) (4) M o d e l s  
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using the Matheron-de Marsily random velocity fields picture./14-21~ 
Experimental evidence for enhanced diffusion is found in turbulent fluids, 
for which typically ~ - 3. (1-4~ 

In this paper we focus on the Matheron-de Marsily model/14) (used to 
describe ground water flow in layered media) and on its extensions by 
Bouchaud et al., (~5) Mazo and Van den Broeck, (16) and Redner. (~7~ In fact, 
interest in motion in layered media is growing. ~18-22) For  the Matheron-  
de Marsily model e equals 3/2. 

We consider a particle moving the longitudinal (x) and in the trans- 
verse (y) directions. The motion in the y direction is taken to be diffusional 
and to depend on the structure of the transverse space, which may be one- 
dimensional, fractal, ultrametric (UMS), etc., as demonstrated in Fig. 1. On 
the other hand, in the longitudinal x direction the direction of the motion 
is preassigned, being a function of y-dependent velocities. The velocities are 
randomly chosen, but kept fixed for a particular realization of the walk. 
Hence, the displacement of a random walker in the longitudinal direction 
is given through 

x ( t ) =  v[y( t ' ) ]  dt' (2) 

where y(t) denotes the y layer occupied by the walker at time t. Expression 
(2) was studied in detail in the occupancy problem by Darling and Kac (23) 
and by Kae. (24) 

(a) 

Fig. 1. Generalizations of the transverse motion. (a) The one-dimensional case, (b) the two- 
dimensional case, (c) the "Toblerone" structure with transverse motion on a Sierpinski gasket, 
(d) transverse motion on an ultrametric space. In all eases a possible realization for the 
longitudinal motion is indicated by arrows. 
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In this paper we choose dimensionless units (different from the con- 
vention introduced in ref. 21): lengths are given in units of a and velocities 
in units of a/z, where a and ~ are units of length and time, respectively. 
Furthermore, we choose the velocities of equal magnitude, but with 
random signs. This corresponds in configuration space to a 6-correlated 
field v(y). Thus 

(v(y)  v(y') )o = (~yy, (3) 

where 6yy, denotes the Dirac delta function, i.e., for the continuum system 
6yy, = 6 ( y - y ' ) .  In Eq. (3) the average is taken over the velocity configura- 
tions. 

This paper is structured as follows: in Section 2 we first consider 
a one-dimensional transverse space. For  this we determine the moments 
of the (xm(t)) and then treat the propagator P(x, t). In Section 3 we 
generalize the model to systems for which the transverse motion takes place 
on fractals, on UMS, and higher-dimensional lattices. We end with conclu- 
sions in Section 4. 

2. T H E  O N E - D I M E N S I O N A L  T R A N S V E R S E  S P A C E  

In this section we study walks whose transverse space is one-dimen- 
sional. We first concentrate on the moments (xm(t)), which, making use 
of Eq. (2), we can write as (17 21) 

(xm(t) )= l {fs v[y(t')] dt'} m) (4) 

Here the averages are first taken over the walks and then over the 
configurations, ( . )  - ( ( . ) w ) c .  Introducing time-ordered variables, we 
have that Eq. (4) takes the form: 

f2f2' (xm(t)) =m! dtl dt2.., dtm ((v[y(tt)] "''V[y(tm)])w)o (5) 

The two type of averages in Eq. (5) factorize, so that 

( ( t )Fy( t l ) ]"""  l~[y(trn)] )w)c 

= f 2  @, ...dy,, (V(yl)-.. v(ym))o 

xp(y~, tm) p(Ym-l--Ym, tm-l--tm)'''p(yl-- y2, tl--t2) (6) 

822/65/5-6-11 
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where p(y, t) is the propagator in the y direction. Inserting (6) into (5), we 
observe that the integrations over the time variables are convolutions; thus 
in Laplace space Eq. (5) simplifies to 

< xm(u) > --_mZ f~176 dy 1 dy2 .. .dy m (V(yl) IJ(y2) ''' V(ym) >c 
U oo 

x p(y , , ,u )  p ( y , , _ l - - y m ,  U ) ' ' ' p ( y , - - y 2 ,  u ) (7) 

In ref. 21 we developed a detailed description for the calculation of the 
second and the fourth moments. In the Appendix of this paper we present 
a method with which the moments can be determined. Here we give the 
result for the mean-squared displacement: 

(x2(t) > = (4/3)(2/~) 1/2 t 3/2 (8) 

where the exponent e- -  3/2 agrees with that obtained by Matheron and de 
Marsily. (14) The prefactor agrees with that given in ref. 21 when the trans- 
formation from dimensionless to regular units is performed. 

An alternative way to derive the second moment is based on N(y, t), 
the number of times the layer y has been visited up to time t. For  a discrete 
y-lattice the displacement reads: 

x(t) = ~ v(y) N(y, t) (9) 
Y 

A typical distribution for N(y, t) is shown in Fig. 2, where N(y, t) is 
plotted vs. y for a particular realization of the random walk after 10,000 

Fig.  2. 
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A typ ica l  r ea l i za t ion  o f  the  N(y ,  t) d i s t r ibu t ion :  P l o t t e d  is N(y ,  t) vs. y af ter  10,000 

t ime steps.  
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time steps. Obviously, the total number of visits is equal to the time 
t: ZyN(y, t)=t. From expression (9) we obtain for the mean squared 
displacement 

(io) 

which, taking the average over the velocity configurations, yields 

~x2(t) ) = I ~  N2(y, t)) (11) 
y W 

Now we introduce the distribution function VN(t), which denotes the 
average number of layers (sites) visited exactly N times in time t. Observing 
that the right-hand side of Eq. (11) is just the second moment of the vX(t) 
distribution, we may write 

(x2(t))  = ~ N 2 vU(t) (12) 
N 

Up to this point the derivation of the alternative representation is general 
and applies for any transverse space. We continue focusing on the one- 
dimensional case and use the generating function technique which is based 
on fixed stepping times z so that the number of steps is n = t / r .  The 
generating function of an arbitrary function f(n) is then defined by f(z) = 
Znz"f(n), where z is the generating function variable. The generating 
function of vN(t) then is (25) 

1 I 1iN-' VN(z)=(I_z)2 p(O,z) 1 p(O,z) (13) 
where p(O, z) is the propagator of the one-dimensional motion. The second 
moment can now be calculated readily so that the generating function for 
the mean squared displacement is 

< X 2 ( Z ) )  = (1 - - Z )  - 2  [-2p(0, z ) -  1] (14) 

Inserting the corresponding expression for the 1D propagator (25) 

p(0, z ) =  (1 - z  2) 1/2 (15) 

into Eq. (14), one has 

(x2(z))  = ( l - z )  -2 [,,2(1 - z  2) 2 / 2  1] (16) 
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which upon  back t rans fo rmat ion  to the t ime domain  gives to first order  

(xZ(t)  > = (4/3)(2/~) 1/2 t3/2 + . . .  (17) 

Here  we notice the agreement  between Eqs. (8) and (17), which were 
derived a long different paths.  

In Fig. 3 we demons t ra te  how the exponent  and the prefactor  fit the 
results obta ined  f rom numerical  realizations based on Eq. (11). Distinct  
f rom ref. 21, here the steps along a par t icular  layer y are chosen to follow 
exactly the n u m b e r  of visits to that  layer; in ref. 21 a two-dimensional  
system was considered where the steps were chosen randomly  either along 
a pregiven x direction or along the positive or negative y direction. 
Averages are taken  o v e r  10 4 realizations. Plot ted in the upper  par t  of the 
figure is the observed exponent  • ln<xZ(t)>/c~ In t versus t. The convergence 
of the s imulated exponent  to the theoretical  value of ~ = 3/2 (indicated by 
a dashed line) is ra ther  fast. The  prefactor  is analyzed in the lower par t  of 
the figure. Plot ted is ( x Z ( t ) > / t  3/2 versus t. The  computed  prefactor  con- 
verges to a constant  value, which agrees well with the theoretical  predict ion 
of Eqs. (8) and (11): (4/3)(2/~) 1/2~ _ 1.064. The latter is indicated by the 
lower dashed line. Fur thermore ,  the figure here is very similar to the one 
presented in ref. 21. 

General ly,  the momen t s  follow th'e power  law 

(xZm(t )  ) = C2m t3m/z (18) 

2.0 

1.6 

1.2 

0.8 

0.4 

01n<x2(~)> 
OInL 

<x2(~) > 
~3/2 

i0 10 2 i0 a 10 4 i0 ~ 

Fig. 3. The mean-squared displacement (X2(t)> for longitudinal motion. In the upper part 
of the figure the effective exponent, given by ~ ln(xZ(t)>/O In t, is plotted versus t, as indicated. 
The upper dashed line represents the theoretical value ~ = 3/2. In the lower part <x2(t)>/t 3/2 
is plotted. The lower dashed line gives the theoretical value of (4/3)(2/x/-~), see text for details. 
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which is obtained from the Laplace inversion of Eq. (A4). The prefactors 
C2m calculated on the basis of Eqs. (A4) and (A21) are listed in Table I. We 
define the reduced moments  

M2~ = (x2m(t) )/(x2(t) ) m (19) 

which are given as numerical results in Table I. 
We now turn to the evaluation of the propagator  P(x, t), the proba- 

bility to be at x at time t, having started at the origin at t = 0. Since the 
system has different characteristics of motion in the longitudinal and in the 
transverse directions, the natural description which we follow is also based 
on different quantities for each direction. In the x direction the mean- 
squared displacement (x2(t)) is the relevant quantity, while in the y direc- 
tion the mean number of layers visited (R( t ) )  is the relevant quantity, as 
will become obvious in the following. Correspondingly, two scaling 
variables may be defined. Since ( x 2 ( t ) ) ~  t 3/2, we set 

and since ( R ( t ) ) ~  t 1/2, we set 

= x/t 3/4 (20a) 

p = R / , , f t  (20b) 

In order to write the propagator  in terms of ~ and p, we focus on 
N(y, t; R), which gives the conditional number  of visits to layer y provided 
that the walker has visited R layers in time t. Accordingly, the conditional 
displacement for a walk having visited exactly R layers is 

f 
c~  

x( t ;R)= dyv(y) N(y, t;R) (21) 
- - o 0  

Table I. Quantit ies Relevant for the Moments  of the 
One-Dimensional  Transverse Space a 

2m .~/v} A(P) C2r n M2m ~/12m 

2 2/1 1.06 1.0 1.0 
4 22/3 3.67 3.240 3.242 
6 1345/36 22.71 18.86 18.82 
8 32678/135 211.80 165.35 163.46 

10 246852010/129600 2720.67 1996.56 1939.38 
12 30062176657/1701000 45563.81 31430.21 29726.37 

a 2m denotes the degree of the moment, 5"/p } A(P) is calculated from Eq. (A21), C2m is the 
prefactor in Eq. (18), the exact reduced moment M2,, is defined in Eq. (19), and the 
approximate m o m e n t  J~f2m is obtained from Eq. (40). 



998 Zumofen et  al.  

The conditional mean squared displacement is then 

(x2(t; R) ) = t~ dy N2(y, t; R) )  (22) 
w(R) 

where the average is taken over the reduced set w(R) of walks for which 
exactly R layers are visited in time t. In principle, the right-hand side of 
Eq. (22) can be given in terms of the average of a squared quantity, which 
we approximate by the square of the average N(t; R), so that 

(x2(t; R) )  = RN2(r; R) ~- CR[-N(t; R)] 2 (23) 

where C is a constant of order unity. From the fact that ~7(t; R) is just the 
mean number of visits to a layer, provided that totally R layers are visited, 
it follows that N(t; R) = t/R. Thus, 

(x2(t; R ) ) ~- Ct2/R (24) 

Taking the average over the R distribution, we again obtain the mean 
squared displacement: 

(x2(t ) )  = (x2(t; R))  R ~ Ct2(R 1)R ~ t 3/2 (25) 

where the last step follows from the relation (R  1 ) ~  t 1/2. 
The exact distribution of x(t) is not known; however, to obtain an 

approximate P(x, t), we may well assume that the conditional displacement 
x(t; R) is Gaussian-distributed: At long times there is a sufficiently large 
number of N(y, t; R) of similar magnitude (see Fig. 2) so that the average 
over the velocity (sign) configurations can be seen as being a large sum of 
independent, equally-distributed quantities, for which the central limit 
theorem applies. Then the conditional propagator is Gaussian: 

P(x, t; R)~- pR(R, t) I X2 ] 
[2~(xZ(t; R))]I/2 exp 2(x2(t; R ) )  (26) 

Here pR(R, t) is the probability to visit exactly R layers in time t. (25) Intro- 
ducing r and p, Eqs. (20), into Eq. (26) gives 

P(r p) ~_ (2ztC) 1/2 pp(p) ~ e x p ( -  ~2p/2C) (27) 

where P(r p) and pp(p) are the rescaled functions corresponding to 
P(xt 3/4, t; Rt 1/2) t 5/4 and pR(R x~ ,  t) x/-[. The propagator P(r follows now 
by integration over p, which we denote by the average 

P(~) ~- ((p/2rcC) 1/2 exp( - ~2p/2C) )o (28) 
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Fig. 4. Three-dimensional presentation of the P(~, p) function. Plotted schematically is 
P(~, p) versus the two variables r and p. See text for details. 

To demonstrate the dependence of P(~, p) on the two variables, we 
depict P(~, p) schematically as a 2D surface in Fig. 4. The profiles along 
the ~ axis follow Gaussian distributions with variances depending on 
p:~Z=~/p. The profiles along the p direction are proportional to 

p (p) ,fp 
In Fig. 5 we show simulation calculation results. Plotted are the ratios 

P(x, t;R)/P(O, t;R) versus ~x/P,  accoding to the scaling relationship 
presented in Eq. (26). The numerical curves (which were slightly smoothed 

for small ~ x/P values) collapse to one single master curve. We found that 

1.0 

P(o,~,.R) 
0.8 

0.6 

0.4 

0.2 

Fig. 5. 

0 
o i 2 .~ a ~p 

Scaling relationship of the P(x, t; R). Plotted is the ratio P(x, t; R)/P(O, t; R) vs. 
~ for various R values and for the time kept fixed at t = 1000. 
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this master curve follows closely a Gaussian; results of this analysis are not 
depicted in the figure. 

Turning now to the resemblance between the problem treated here 
and the trapping problem, we notice that in Eq. (28) the variable p appears 
linearly in the exponent. Thus, this form is very similar to those encoun- 
tered in the trapping problem. The resemblance becomes more apparent 
when we substitute 2 = (~2/2C) in Eq. (28), so that 

P(~)~ ( ~ e - Z R ) p =  ( e x p ( - , ~ p + l l n p ) ) p  "-~ (e ;~P)p (29) 

where the last equality holds approximately for large 2. The last term on 
the right-hand side of Eq. (29) has been the subject of many studies and it 
has been found that the rare events dominate the asymptotic decay 
behavior(26 35) and that the Donsker-Varadhan/26) limit applies for the 
limiting large-2 behavior. 

The resemblance of the motion in layered media and of the trapping 
problem appears also for the probability of a stretched-out walk. For these, 
x ( t )  reaches the extreme value, x = t, for which the walk takes place on 
layers of equal orientation. The probability to have layers of equal orienta- 
tion drops as (1/2) R-l, where R, as given above, is the number of layers 
visited. Thus, the probability to stay on layers of equal signs follows the 
relation 

P(x ,  t ~- x )  ~ ((,1/2)R 7 .  (30) 

which corresponds to the trapping survival probability with trap concen- 
trations of 1/2. (27) Again for large x the Donsker-Varadhan (26) limit 
applies, which leads to the decay 

P(x ,  t ~- x )  ~ exp( - C x  1/3) (31) 

Following the methods developed for the trapping problem, (26-35) we 
determine here the asymptotic forms for the small- and large-~ behavior of 
P(r at long times. For small r we obtain from a first-cumulant-type 
approximation (27) 

P({) -~ ((p)/2gC) 1/2 exp(-  ~ 2 ( p ) / 2 C )  (32) 

so that for small x 
P(x ,  t) ~ ao t-3/4 exp( -a l  ~2) (33) 

where the constants are ao = 21/47~-3/4C -1/2 and al = (2/rc)m/C. For large 
we make use of the exact representation of the pp(p)  distribution(2S): 

po(p)=gp-3 ~" [TC2(2jq_ 1)2p 2 1] e x p [ - ( 2 j +  1) 2 rc2/2p 2] (34) 
j=l  
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Following refs. 34 and 36, we apply the method of steepest descent, which 
results in 

P(4)~bot-3/4~5/3exp(-~/2)(l + ~ bj/~ j) (35) 
j=l 

with ~=  3 .2  1/3(7z/C)2/3 44/3 and where the first bj constants are bo= 
217/6g 2/33-1/2C-4/3, b~=29/24, b2=745/1152, and b3=-26155/82944. 
Equations (33) and (35) may be cast in one single scaling form: 

P(x, t) ~ t 3/4f(~), ~ ~ x/t 3/4 (36) 

with 

l'exp( -- C142) 
f (~)  ~ (45/3 e x p ( -  C2~ 4/3) 

for small { (37a) 

for large ~ (37b) 

The scaling function f (~)  turns out to show a complicated crossover 
behavior. Only asymptotically, for very large ~, does the function f (~)  
follow a stretched Gaussian behavior with an exponent 4/3, as will be 
illustrated below in Fig. 8. Here we stress again that Eq. (35) holds in a 
limited x regime only; for x > t, P(x, t) drops to zero. For a stretched-out 
walk we insert t=x  into Eq. (37b) and obtain the exponential term 
exp(-Cx~/3), which agrees with the form given in Eq. (31). 

From the approximate representation of P(x, t) we may derive 
approximate moments and compare them to the exact ones. We consider 
Eq. (27) and calculate the moments of the scaling variable 4: 

(~2rn) = f d4 42mp(~) 

= (27r6") 1/22 f dp Pp(P)x/-fif d4 42m 

= ( 2 m -  1)!! C m ( p - m )  w 

exp( -- ~2p/2C) 

(38) 

where ( 2 m - l ) ! !  denotes the double factorial ( 2 m - 1 ) ! ! = 1 . 3 . 5 . . .  
( 2 m - 1 ) .  From the distribution given in Eq. (34) the negative moments 
(P-m( t))w can be calculated analytically: 

(p--m) = dp pp(p) p-"  

= 8 . 2 - m / 2 ( m  + 1)(1 -- 2 , . -2)  n-m 1F( 1 + m/2) ~(2 + m) (39) 
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where ~ is the Riemann zeta function. Expectation values are given in 
Table I. The reduced approximate moments, which we denote by a tilde to 
distinguish them from the exact expressions, can be written in a simple 
closed form: 

J~2m = (r162 

= ( 2 m -  1)![ (p m(t))(D-l(l))-m (40) 

The results of these moments are also collected in Table I. We observe that 
there is a very good agreement between the exact and approximate 
moments for low-order moments and that the agreement is better than 6 % 
up to the 12th moment. This supports our assumption that x(t; R) can be 
well described by a Gaussian and that, according to Eq.(24), 
(x2(t; R)  ) ~ t2/R. 

Note that the coefficients ai and bi in Eqs. (33) and (35) depend on C, 
which is the only unknown quantity. We may determine C by equating the 
mean-squared displacement given in Eq. (17) and the second moment 
obtained from Eq. (40). This results in 

C =  ~(2/7c) 1/2 ( /3  1}-1_~_ 1.564 (41) 

In Fig. 6 we present (x2(t;,R)} as obtained from simulation calcula- 
tions for which averages are taken o v e r  10 4 orientation configurations and 
o v e r  10 4 random walk realizations. In order to test the functional 

3.0 

z <x (t,.R)>R 
~2 

2.0 

1.5 

1.0 

0.5 

0 
0 

" ' , / 3  • Po(P) [ 

[ ", 

L0 2.0 3.0 4.0 
P 

Fig. 6. The functional dependence of (x2(t;  R) ) .  Full lines are the simulation results plotted 
as (x2(t;  R) )R / t  2 vs. p. The number  of time steps is given parametrically; the values are, from 
bot tom to top: t = 10, 102, 103, 104, and 105. The dashed line represents the theoretical pp(p), 
Eq. (34). 
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dependence of (x2(t;R)) on its arguments, we plotted (x2(t;R))R/t 2 
versus p with t as parameter. We choose this type of presentation, because 
if Eq. (24) holds exactly, the curves would follow horizontal lines. Further- 
more, we have to connect the (x2(t;R)) to the pp(p) distribution, 
Eq. (34), to depict the relevant range for {X2( t ;  R ) ) .  The simulated curves 
deviate from horizontal lines and the deviations are larger for larger p 
values. However, in the small-p regime [relevant for the calculation of 
P(x, t) at large x]  we observe that the curves follow horizontal lines 
closely. We also observe that at long times the curves fall on top of each 
other within the numerical accuracy, which indicates a tendency to scaling 
at long times. Furthermore, the curves center around a value close to 1.5, 
which is in reasonable agreement with the theoretical result C-~ 1.56, 
Eq. (41). All this is in good agreement with the analytical approach 
presented in this paper. 

To give further justification to the assumption that the x(t; R) are 
Gaussian-distributed, we plot in Fig. 7 the ratio (x4(t;R))/(x2(t; R ) )  2, 
which should take the value 3 for Gaussian distributions. We see that 
for larger times the curves converge toward an asymptotic form, again 
indicating scaling; moreover, some minor systematic deviations with a 
tendency to values larger than 3 are noticeable, mostly close to the center 
of the relevant regime, which is again indicated through the pp(p) distribu- 
tion. However, for small p values, the important range for the calculation 
of the wings of P(x, t), the ratio is quite close 3. 

In Fig. 8 we compare the simulated and the theoretical distributions 

4.0 
< x 4 (~,. R) > 
<x2(~, .R)> 2 

3.0 

2.0 

1.0 

/ ', j 4  xpp (p )  
d' 

i 

/ 

2 3 4 
P 

Fig. 7. Excess of the x(t; R) distribution. Plotted is the ratio (x4(l; R))/(x2(t; R))  2 vs. p. 
The number of time steps is given parametrically; the values are, from bottom to top: t = 10, 
102, 103, 104, and 105. The dashed line represents the theoretical pp(p), Eq, (34). 
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i F ~o,, ~ 

F "~'~ 1 .2"  " ~ ' ' 
F \ \  o 2 4 6 

3 \ \ \  10 \ ~ x  . ~  

i03~i04 
10 -4 ~ , ,  , , . . .  ~ . . . .  >~ , ~ . ~  . . . . .  

1 2 3 4 5 6 7 

Fig. 8. The propagator P(x, t). The dashed lines are the simulation results plotted as 
P(x, t ) t  3/4 on a log scale versus ~4/~, where ~ is the scaling variable: ~ =x/ t  3/4. The number 
of time steps t is given parametrically, as indicated. The full line is the theoretical result, 
obtained from Eqs. (33) and (35). The insert shows the effective exponent for the same 
interval; see text for details. 

P(x, t). Again averages were taken o v e r  104 orientation configurations and 
10 4 random walk realizations. Plotted is P(x, t) t 3/4 o n  a logarithmic scale 
versus 34/3 with t as parameter. The dashed lines are the results of the 
simulation calculations, and the full line depicts the theoretical finding of 
Eqs. (33) and (35), where a suitable ~ is chosen for the crossover. At longer 
times the simulation results follow the theoretical curve over a larger 
range; this is due to the fact that at longer times the drop of P(x, t) to zero 
occurs at progressively larger x values. In accordance to the findings of 
Fig. 6, the constant ~ was chosen to be C =  1.53, slightly smaller than the 
value given in Eq. (41). For larger ~ the propagator P(x, t) depends sen- 
sitively on the value of the constant C; the agreement between the simula- 
tion result for t = 104 and the theoretical curve is better when one uses 

= 1.53 instead of C = 1.56. Again there are some minor differences from 
the corresponding figure of ref. 21, due to the slightly different models used. 

The curves in Fig. 8 would follow straight lines if they obeyed a simple 
stretched Gaussian behavior P(x, t)~exp(-C~4/3); however, only 
asymptotically, for very small P(x, t) one may expect to attain this 
behavior. To highlight this fact, we plot in the insert of Fig. 8 the effective 
exponent: # l n { - l n [ P ( x ,  t)/P(O, t)]}/~ In t, where P(x, t) is calculated 
from Eqs. (35). We observe that at ~ values for which P(x, t) has decayed 
by almost four orders of magnitude, the exponent is still 1.63, clearly above 
the asymptotic value of 4/3. This finding documents the similarity between 
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the trapping and the diffusion problem. (34/ Both show very slow con- 
vergence to a simple stretched exponential and for both problems one lacks 
a simple expression which would hold in the whole range of ~ values. 

3. GENERALIZAT ION 

Here we generalize the results of Section 2 to motion in higher-dimen- 
sional transverse spaces, such as, e.g., a square lattice (see Fig. lb) or 
fractals. For fractals we use as example a Sierpinski gasket, so that the x 
axis is perpendicular to the gasket. The resulting structure was called 
Toblerone (35~ and is illustrated in Fig. lc. Another example for a transverse 
space is a system with hierarchically arranged barriers (or more generally, 
with hierarchically arranged connections between layers). This is illustrated 
in Fig. ld, where the transverse connections represent an ultrametric space 
(UMS). 

We first concentrate on the mean-squared displacement. Due to the 
spatial 8 correlation of the velocities, Eq. (3), the temporal velocity correla- 
tion function measures the probability to be at the origin. Hence (16) 

C~(t) = (v(t) v(t = 0))w ~ p(0, t) (42) 

where p(0, t) is the propagator of the diffusional motion in the transverse 
space. Generally, p(0, t) is known to follow the power law 

p(0, t )  ~ g--d/2 (43) 

but we consider also fractals and UMS, for which (35) 

~'t-~/2 for fractals (44) 
p(0, t) ~ ( t  ~ for UMS 

Here g/ denotes the spectral dimension for fractals and is equal to the 
Euclidean dimension for regular lattices. 7 is the exponent resulting from 
thermally activated transitions on UMS: ~ = (kT/A) In z, with T being the 
temperature, A the energy-level spacing, and z the branching ratio of the 
tree. The mean-squared displacement follows from the double integration: 

(x2(t ) )  = tit' dt" (v(t') v(t")) =2 dt' ( t -  t') C~(t') (45) 

Inserting Eqs. (42) and (44) into Eq. (45), we obtain 

~ t 2-J/2, 6 < 2  

(x2( t ) )  = ~t In t, ~7 = 2 (46) 

/It, 6 > 2  
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More generally and following the one-dimensional case, we consider the 
two relevant sealing variables; from ( x 2 ( t ) ) ~  t ~ we set 

and from ( R ( t ) )  ,., t ~ we set 

= x / f  :~/2 (47a) 

p = R / t  ~ (47b) 

In Eqs. (47) the exponent for the mean number of sites visited is 

~min(~/2, 1 ) for fractals 

/~ = (min(7, 1) for UMS 
(48) 

for which we may write 

= 2 - fl (49) 

possibly up to logarithmic corrections for the marginal cases. We note that 
the exponent is bounded for fractals: 1 < c~ < 3/2, which means that expres- 
sion (47a) interpolates between the pure Brownian motion with a = 1 and 
the enhanced diffusion with ~=3 /2 .  For  UMS the diffusion exponent 
covers the full range between Brownian motion and ballistic motion: 
1 < c~ < 2. Brownian behavior occurs at high temperatures, for which each 
step practically leads to a new layer, while ballistic behavior results at very 
low temperatures, where the motion involves only a few layers. 

Again following the derivation for the 1D case, we have for the 
propagator  in terms of the two scaling variables 

P(~) ,-~ t -~ /2(exp(- -cr  (50) 

For  small r we introduce the first.cumulant: 

P(~) ~ t =/2 exp( - c 1 ~ 2 ( p ) )  

= t =/2 exp( - c2x2/ t  ~) (51) 

For  large ~ we consider the Donsker -Varadham limit (26~ and obtain for 
d~<2 

P ( x ,  t) ~ t -~/2 e x p [ - c 3 ~  4/(a+ 2)] 

= t =/2 e x p [ _ c 3 ( x 4 / t 4 - a ) l / ( a + 2 ) ] ,  d <  2 (52) 

For  d>~ 2 the analogy between trapping and the problem treated here fails: 
For  trapping the long-time behavior is obtained from the survival 
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probability within an absorbing sphere irrespective of whether all sites 
within the sphere have been visited until absorption. (29~ Here the number 
of layers visited is crucial and cannot be approximated by a spherical 
volume in the transverse space with a radius corresponding to the diffusion 
length. Thus the analogy works only for compact random walks, i.e., for 
the 3 <  2 regime. In fact, for the probability of a stretched-out walk with 
strictly all steps in the same direction we obtain in analogy to the 1D case 

P(x, t ~- x)  ~ exp[ - Cx a/(~+ 2~] (53) 

Setting t = x, this expression reproduces that of Eq. (52). We thus conclude 
that for ~r Eqs. (50) and (52) provide an appropriate description of 
P(x, t). By analogy, we assume that scaling holds also for d >  2, so that we 
have for large x 

P(x,  t) ~ exp[ - C(xZ/t)~/(a+2)], d >  2 (54) 

This expression equals that of regular diffusion only in the limit 3 ~ oo. In 
other words, we recover ordinary diffusion behavior in the limit when each 
step leads to a new layer and the correlation between the x orientations of 
successive steps is zero. Collecting the results of Eqs. (50), (52), and (54), 
we obtain the scaling form 

e(x ,  t) ~ t ~/2e-"r ~ ~ x / t  ~/2 (55) 

where 

f~ for small ~ (56a) 
6 = ,_  max(2, 3 ) / (3+  2) for large r (56b) 

where the last expression is a conjecture for the case of 3 >  2; furthermore, 
P(x,  t) is zero for x > t, so that Eqs. (55) and (56) are approximate. 

5. C O N C L U S I O N S  

In this paper we studied the enhanced diffusion due to convection in 
random velocity fields, also connecting the problem to trapping. For one- 
dimensional transverse motion we reported the exact calculation of the 
moments of the displacements. The propagator P(x, t) depends on two 
relevant quantities, due to differences in the motion in the longitudinal 
and transverse directions, respectively. Enhanced diffusion bears a close 
relationship to trapping: thus we could apply the methods developed for 
trapping to derive long-time asymptotic forms for P(x, t) both for small 
and large x values. P(x, t) shows a stretched Gaussian pattern characterized 
by a complex crossover behavior and slow convergence to the asymptotic 
forms. We supported our analytical findings by simulation calculations. 
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We also generalized the model to higher-dimensional transverse 
motion, and again used two scaling variables. Here the analogy to trapping 
holds closely as long as the dimensionality of the transverse space is less 
than two. For space dimensions larger than two the scaling form presented 
by us for large x values is a conjecture. 

There is a further analogy between the results presented in this work 
and those obtained for L6vy walks. (8 13) L~vy walks were used to describe 
both dispersive and enhanced diffusion. The situation is similar here, in 
that we obtain enhanced diffusion readily. Interestingly, there is a basic 
difference between the models: L6vy walks are related to continuous-time 
random walks (CTRW), based on waiting-time probabilities which 
(distinct from the layered models presented here) are independent of the 
particle location. In the classical CTRW framework the waiting-time 
probabilities show power-law decays in space and time, from which (for 
small exponents) enhanced diffusion follows. On the other hand, in the 
model treated in this paper the displacements depend heavily on the 
organization of the velocities in the layers and the averages also involve the 
particular velocity configurations. The enhanced diffusion stems mainly 
from the strong sample-to-sample fluctuations. 

On a more technical note, we stress that care is required when deter- 
mining asymptotic forms; it is often useful to go beyond the exponential 
part of the saddlepoint approximation, because accounting for power-law 
exponential prefactors is often necessary for obtaining a satisfactory agree- 
ment between analytical and numerical results. This is in line with previous 
findings for related problems (34'3v) and we used this knowledge here to 
highlight the crossover to the asymptotic stretched Gaussian behavior. 

Summarizing, both diffusion in random velocity fields and L6vy walks 
offer many appealing aspects in describing enhanced diffusion; both models 
start from an underlying microscopic physical picture, but also for both 
models the connection to a first-principles understanding of enhanced 
diffusion is still rudimentary. 

APPENDIX  

In this Appendix we derive a closed-form expression which allows the 
exact calculation of the moments for the displacements in the Laplace 
space. We begin by rewriting Eq. (7) of the main text: 

m! dyldy2. . .dy m <v(yl)v(y2)...v(ym)>~ <x"(t)> = T  _~ 

• P(Yl, u) P(Y2-- y~ ,u) ' ' ' p (ym--  Ym_l,U) (A1) 



Trapping Aspects in Enhanced Diffusion 1009 

and consider for p(y, u) the one-dimensional solution of the propagator: 

p(y, u) = (2u) 1/2 exp[ - lYl  (2u) ~/2] (12) 

As mentioned in the main text, dimensionless units are used, i.e., lengths 
are given in units of a, time in units of z, and the velocities in units of a/z. 
Since the velocities are 6-correlated [Eq. (3) of the main text], one may 
write the configurational-dependent term of the integrand in Eq. (A1) as 

(v(yl) . . .v(y, , ))c= ~ (~(yp--yp2) a(yp2--ye3)...6(yem_~--yp,,) (A3) 
{e) 

where P denotes a particular permutation of the indices {1, 2 ..... m} and 
the sum runs over all possible permutations {P). Inserting (12) and (A3) 
into (A1) and substituting yj for y/(2u) m, one has 

m! f ~  
(xm(u) ) - ~ dill dfi2"'" dfim u ( a u )  3m/4 

oo 

x 6 ( y p l  - )~p2 ) 6 ( y p 2  - y p 3 ) - - .  (~(YPm 1 - -  )2Pro) 

x e x p ( - I P l l - l Y 2 - Y ~ [  . . . . .  lYm--Ym-ll) 

m! --U(2u)3m/4 ~ Am(P ) (A4) 
{e} 

Because of the products of g-functions, the Am(P) differ from zero only if 
there are pairs of like variables. From this it follows that ( m -  1)!! possible 
realizations of pairs occur and that accordingly an equal number of Am(P) 
have to be calculated. Furthermore, the integration has to be taken only 
over half of the number of variables, which we denote by z 1, z2,..., z,,  
n = m/2. 

We now concentrate on the integrand and consider a zeroth set P of 
pairs of indices: 

{1, 1, 2, 2,..., n, n} (A5) 

for which the integrand reads 

exp( - I z l l  - Iz2 - zlF . . . . .  Iz~ - z,_ 11) (A6) 

Reordering the indices by interchanging the second and the third indexes, 
one has 

{1, 2, 1, 2,..., n, n} (A7) 

from which the integrand reads 

e x p ( - ] z l l -  3 I Z 2 - - Z I I - - I z 3 - - Z 2 ]  . . . . .  ] Z n - - Z n _ l ]  ) (A8) 

822/65/5-6-12 



1010 Zumofen e t  al. 

Thus the Am(P ) are of the general form 

Am(P)=f ~ dzl.. .dznexp(-[zl[-~ au(P) lzj-zi] ) (A9) 
- - o o  i < j  

where a U are integers and depend on P. Although this integrand looks 
rather simple, it turns out that the integration is not trivial because of the 
absolute value terms which appear in the exponent. To solve the integral, 
we first eliminate the absolute value terms by splitting the integration 
ranges in the n-dimensional variable space, such that ordered sets of 
variables appear. Thus the integration has to be performed for ranges: 
Z 1 "~  Z 2 < . .  �9 < Z n ; Z 2 < Z 1 < Z 3 < �9 ' '  < Z n ; plus all other permutations of 
ordered sets of variables z~ - . -z , .  

Because z~ appears also by itself in the exponent, we center the 
integration around zl and write 

Am(P)=f ~ dZl f )  dz2""ff dznexpI--lZll-- ~ aq(P)(zj--zi) j 
- - 00  1 n 1 i < j  

~ -  d z  I d z  2 d z  3 . . .  d z  n 

- - o ~  -- I n - I  

X exp[--lZll+a12(z2--Zl)-- ~ aij(P)(zj-zi)] 
i < j  
i > 2  

+ {integrals for all other possible permutations 

of sets of ordered variables } (110) 

We now denote by I a particular permutation of the indices {1, 2 ..... n} 
such that 

Z 1 1 " ~ Z 1 . 2 <  " ' "  < Z l k  l < Z l < Z i k . t  < " ' "  < Z I ,  ' (Al l )  

with Ik = 1. We further denote by J the inverted permutation vector I so 
that 

Is=j (112) 

Making use of the permutation vectors I and J, one may write the integrals 
in Eq. (A10) as 

Am = ~ dZl dZlk_ 1 dzl,_2." 

x dz1~ dzik.~ d z I k +  2 " ' "  
l lk+l 1,~-1 

X exp[--lZl]-- ~ aijGjiJj(zj--zi) j 
i < j  

dz~ 

(A13) 
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where the sum runs over all possible permutations {I} and for simplicity 
we have omitted the permutation vector P. The ~r~ takes values +1 
according to the conditions 

1, j >  i 

au= --1, j < i  
(A14) 

Substituting 2j = z~j or equivalently zj = ~jj into Eq. (A13), we have that the 
integrand simplifies to 

A m  = ~ ,  d2k dSk 1 dzk -  2 " " " 

x j d21 d2k+l d2k+2 ' �9 �9 d2. 
- - o O  k Z k + l  Z - n 1 

i < j  

The sum in the exponent can be rearranged so that 

i < j  

Collecting the coefficients for each integration variable, one has for the 
integrand 

exp ( - [ ~ . k [ -  ~ bj~j) (A17) 
j = [  

with 

hi_=. - ~ al, ljGij 
j=  1 

where the b i depend on P through a0.(P ). Observing that 

n 

~ b j=O 
j = l  

the integration can be performed leading to 

--1 - 1  - 1  
A m = 2 2 b lu t"  1 ~1_ b2 "" (i} 

1 1 
• - -  

b n b n + b s  1"" 

b l + b 2 +  "'" +bk 1 

1 

b . + b ~ _ l  + "'" + b k + l  

(A18) 

(A19) 

(A20) 
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This express ion m a y  be recast into 

[, • Am = 2  Z - -  l ) k - 1  (A21) 
{I} i j 1 / \ i = k + l  j = l  

which is our  final result.  I t  thus follows tha t  the ca lcula t ion  of the m t h  
m o m e n t  requires the sum of ( m - 1 ) ! !  (m/2)! terms. The  real iza t ion of the 
a lgor i thm can be rendered  mach ine- independen t ,  being l im i t e d  only by  the 
c o m p u t e r  t ime and by  the number  of digits of integer  numbers  available.  
The numer ica l  results are presented  in Table  I. 
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